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Abstract. It is well known that the number of non-isomorphic unit interval orders
on [n] equals the n-th Catalan number. Using work of Skandera and Reed and work
of Postnikov, we show that each unit interval order on [n] naturally induces a rank n
positroid on [2n]. We call the positroids produced in this fashion unit interval positroids.
We characterize the unit interval positroids by describing their associated decorated
permutations, showing that each one must be a 2n-cycle encoding a Dyck path of
length 2n.
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1 Introduction

A unit interval order is a partially ordered set that captures the order relations among
a collection of unit intervals on the real line. Unit interval orders were introduced by
Luce [8] to axiomatize a class of utilities in the theory of preferences in economics. Since
then they have been systematically studied (see [3, 5, 4, 6, 13] and references therein).
These posets exhibit many interesting properties; for example, they can be characterized
as the posets that are simultaneously (3 + 1)-free and (2 + 2)-free. Moreover, it is well
known that the number of non-isomorphic unit interval orders on [n] equals 1

n+1(
2n
n ), the

n-th Catalan number (see [3, Section 4] or [14, Exercise 2.180]).
In [13], motivated by the desire to understand the f -vectors of various classes of

posets, Skandera and Reed showed that one can canonically label the elements of a unit
interval order from 1 to n so that its n× n antiadjacency matrix is totally nonnegative (i.e.,
has all its minors nonnegative) and its zero entries form a right-justified Young diagram
located strictly above the main diagonal and anchored in the upper-right corner. The
zero entries of such a matrix are separated from the one entries by a Dyck path joining
the upper-left corner to the lower-right corner. Motivated by this observation, we call
such matrices Dyck matrices. The Hasse diagram and the antiadjacency (Dyck) matrix of
a canonically labeled unit interval order are shown in Figure 1.
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Figure 1: A canonically labeled unit interval order on the set {1, . . . , 6} and its antiad-
jacency matrix, which exhibits its semiorder path, i.e., the Dyck path separating its one
entries from its zero entries.

On the other hand, it follows from work of Postnikov [10] that n× n Dyck matrices
can be regarded as representing rank n positroids on the ground set [2n]. Positroids,
which are special matroids, were introduced and classified by Postnikov in his study of
the totally nonnegative part of the Grassmannian [10]. He showed that positroids are in
bijection with various interesting families of combinatorial objects, including decorated
permutations and Grassmann necklaces. Positroids and the nonnegative Grassmannian
have been the subject of a great deal of recent work, with connections and applications
to cluster algebras [12], soliton solutions to the KP equation [7], and free probability [2].

In this paper we characterize the positroids that arise from unit interval orders, which
we call unit interval positroids. We show that the decorated permutations associated to
rank n unit interval positroids are certain 2n-cycles in bijection with Dyck paths of length
2n. The following theorem is a formal statement of our main result.

Main Theorem. A decorated permutation π represents a unit interval positroid on [2n] if and
only if π is a 2n-cycle (1 j1 . . . j2n−1) satisfying the following two conditions:

1. in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear in increasing order while the
elements n + 1, . . . , 2n appear in decreasing order;

2. for every 1 ≤ k ≤ 2n− 1, the set {1, j1, . . . , jk} contains at least as many elements of the
set {1, . . . , n} as elements of the set {n + 1, . . . , 2n}.

In particular, there are 1
n+1(

2n
n ) unit interval positroids on [2n].

The decorated permutation associated to a unit interval positroid on [2n] naturally
encodes a Dyck path of length 2n. Here we provide a recipe to read this decorated
permutation directly from the antiadjacency matrix of the unit interval order.

Theorem 1.1. Let P be a canonically labeled unit interval order on [n] and A the antiadjacency
matrix of P. If we number the n vertical steps of the semiorder (Dyck) path of A from bottom to
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top in increasing order with {1, . . . , n} and the n horizontal steps from left to right in increasing
order with {n + 1, . . . , 2n}, then we obtain the decorated permutation associated to the unit
interval positroid induced by P by reading the semiorder (Dyck) path in northwest direction.

Example 1.2. The vertical assignment on the left of Figure 2 shows a set I of unit in-
tervals along with a canonically labeled unit interval order P on [5] describing the or-
der relations among the intervals in I (see Theorem 2.2). The vertical assignment on
the right illustrates the recipe given in Theorem 1.1 to read the decorated permutation
π = (1 2 10 3 9 4 8 7 5 6) associated to the unit interval positroid induced by P directly
from the antiadjacency matrix. Note that the decorated permutation π is a 10-cycle sat-
isfying conditions (1) and (2) of our main theorem. The solid and dashed assignment
signs represent functions that we shall introduce later.

Figure 2: Following the solid assignments: unit interval representation I , its unit
interval order P, the antiadjacency matrix ϕ(P), and the semiorder (Dyck) path of
ϕ(P) showing the decorated permutation π.

2 Background and Notation

For ease of notation, when (P,<P) is a partially ordered set (poset for short), we just
write P, tacitly assuming that the order relation on P is to be denoted by the symbol <P.
In addition, every poset showing up in this paper is assumed to be finite.

Definition 2.1. A poset P is a unit interval order provided that there exists a bijective map
i 7→ [qi, qi + 1] from P to a set S = {[qi, qi + 1] | 1 ≤ i ≤ n, qi ∈ R} of closed unit intervals
of the real line such that for distinct i, j ∈ P, i <P j if and only if qi + 1 < qj. We then say
that S is an interval representation of P.
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For each n ∈N, we denote by Un the set of all non-isomorphic unit interval orders of
cardinality n. For nonnegative integers n and m, let n + m denote the poset which is the
disjoint sum of an n-element chain and an m-element chain. Let P and Q be two posets.
We say that Q is an induced subposet of P if there exists an injective map f : Q → P
such that for all r, s ∈ Q one has r <Q s if and only if f (r) <P f (s). By contrast, P is a
Q-free poset if P does not contain any induced subposet isomorphic to Q. The following
theorem provides a useful characterization of the elements of Un.

Theorem 2.2. [11, Theorem 2.1] A poset is a unit interval order if and only if it is simultaneously
(3 + 1)-free and (2 + 2)-free.

For a poset P, a bijection ` : P → [n] is called an n-labeling of P. After identifying P
with [n] via `, we say that P is an n-labeled poset. The n-labeled poset P is naturally labeled
if i <P j implies that i ≤ j. Figure 3 depicts the 6-labeled unit interval order introduced
in Figure 1 with a corresponding interval representation.

Figure 3: A 6-labeled unit interval order and one of its interval representations.

Another useful way of representing an n-labeled unit interval order is through its
antiadjacency matrix.

Definition 2.3. If P is an n-labeled poset, then the antiadjacency matrix of P is the n× n
binary matrix A = (ai,j) with ai,j = 0 if and only if i 6= j and i <P j.

Recall that a binary square matrix is said to be a Dyck matrix if its zero entries form
a right-justified Young diagram strictly above the main diagonal and anchored in the
upper-right corner. All minors of a Dyck matrix are nonnegative (see, for instance,
[1]). We denote by Dn the set of all n × n Dyck matrices. As presented in [13], every
unit interval order can be naturally labeled so that its antiadjacency matrix is a Dyck
matrix. This yields a natural map ϕ : Un → Dn that is a bijection (see Theorem 3.5). In
particular, |Dn| is the n-th Catalan number, which can also be deduced from the one-to-
one correspondence between Dyck matrices and their semiorder (Dyck) paths.

Let Mat≥0
d,n denote the set of all full rank d× n real matrices with nonnegative maximal

minors. Given a totally nonnegative real n× n matrix A, there is a natural assignment
A 7→ φ(A), where φ(A) ∈ Mat≥0

n,2n.
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Lemma 2.4. [10, Lemma 3.9]2 For an n× n real matrix A = (ai,j), consider the n× 2n matrix
B = φ(A), where

a1,1 . . . a1,n
... . . . ...

an−1,1 . . . an−1,n
an,1 . . . an,n

 φ7−→


1 . . . 0 0 (−1)n−1an,1 . . . (−1)n−1an,n
... . . . ...

...
... . . . ...

0 . . . 1 0 −a2,1 . . . −a2,n
0 . . . 0 1 a1,1 . . . a1,n

 .

Under this correspondence, ∆I,J(A) = ∆(n+1−[n]\I)∪(n+J)(B) for all I, J ⊆ [n] with |I| = |J|
(here ∆I,J(A) is the minor of A determined by the rows I and columns J, and ∆K(B) is the
maximal minor of B determined by columns K).

Using Lemma 2.4 and the aforementioned map ϕ : Un → Dn, we can assign via φ ◦ ϕ

a matrix of Mat≥0
n,2n to each unit interval order of cardinality n. In turns, every real matrix

of Mat≥0
n,2n gives rise to a positroid, a special representable matroid which has a very rich

combinatorial structure. Let us recall the definition of matroid.

Definition 2.5. Let E be a finite set, and let B be a nonempty collection of subsets of E.
The pair M = (E,B) is a matroid if for all B, B′ ∈ B and b ∈ B \ B′, there exists b′ ∈ B′ \ B
such that (B \ {b}) ∪ {b′} ∈ B.

If M = (E,B) is a matroid, then the elements of B are said to be bases of M. Any two
bases of M have the same size, which we denote by r(M) and call the rank of M.

Definition 2.6. For d, n ∈N such that d ≤ n, let A ∈ Mat≥0
d,n whose columns are denoted

by A1, . . . , An. The subsets B of [n] such that {Ab | b ∈ B} is a basis for the vector space
Rd are the bases of a matroid M(A). Such a matroid is called a positroid.

Each unit interval order P (labeled so that its antiadjacency matrix is a Dyck matrix)
induces a positroid via Lemma 2.4, namely, the positroid represented by the matrix
φ(ϕ(P)).

Definition 2.7. A positroid on [2n] induced by a unit interval order is called unit interval
positroid.

We denote by Pn the set of all unit interval positroids on the ground set [2n]. The
function ρ ◦ φ ◦ ϕ : Un → Pn, where ρ(B) is the positroid represented by B ∈ Mat≥0

n,2n,
plays a fundamental role in this paper. Indeed, we will end up proving that such a
function is a bijection (see Theorem 5.4).

Several families of combinatorial objects, in bijection with positroids, were intro-
duced in [10] to study the totally nonnegative Grassmannian, including decorated per-
mutations, Grassmann necklaces, Le-diagrams, and plabic graphs. We use decorated

2There is a typo in the entries of the matrix B in [10, Lemma 3.9].
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permutations, obtained from Grassmann necklaces, to provide a compact and elegant
description of unit interval positroids. In the next definition subindices are considered
module n.

Definition 2.8. Let d, n ∈N such that d ≤ n. An n-tuple (I1, . . . , In) of d-subsets of [n] is
called a Grassmann necklace of type (d, n) if for every i ∈ [n] the next conditions hold:

• i ∈ Ii implies Ii+1 = (Ii \ {i}) ∪ {j} for some j ∈ [n];

• i /∈ Ii implies Ii+1 = Ii.

For i ∈ [n], the total order <i on [n] defined by i <i · · · <i n <i 1 <i · · · <i i − 1
is called shifted linear i-order. For a matroid M = ([n],B) of rank d, one can define the
sequence I(M) = (I1, . . . , In), where Ii is the lexicographically minimal ordered basis of
M with respect to the shifted linear i-order. It was proved in [10, Section 16] that the
sequence I(M) is a Grassmann necklace of type (d, n). We call I(M) the Grassmann
necklace associated to M. When M is a positroid we can recover M from its Grassmann
necklace (see, e.g., [9] and [10]).

For i ∈ [n], the Gale order on ([n]d ) with respect to <i is the partial order ≺i defined in
the following way. If S = {s1 <i · · · <i sd} ⊆ [n] and T = {t1 <i · · · <i td} ⊆ [n], then
S ≺i T if and only if sj <i tj for each j ∈ [d].

Theorem 2.9. [9, Theorem 6] For d, n ∈ N such that d ≤ n, let I = (I1, . . . , In) be a Grass-
mann necklace of type (d, n). Then

B(I) =
{

B ∈
(
[n]
d

) ∣∣∣∣ Ij ≺j B for every j ∈ [n]
}

is the collection of bases of a positroid M(I) = ([n],B(I)), where ≺i is the Gale i-order on ([n]d ).
Moreover, M(I(M)) = M for all positroids M.

Therefore there is a natural bijection between positroids on [n] of rank d and Grass-
mann necklaces of type (d, n). However, decorated permutations, also in one-to-one corre-
spondence with positroids, will provide a more succinct representation.

Definition 2.10. A decorated permutation of [n] is an element π ∈ Sn whose fixed points j
are marked either “clockwise"(denoted by π(j) = j) or “counterclockwise" (denoted by
π(j) = j).

A weak i-excedance of a decorated permutation π ∈ Sn is an index j ∈ [n] satisfying
j <i π(j) or π(j) = j. It is easy to see that the number of weak i-excedances does not
depend on i, so we just call it the number of weak excedances.

To every Grassmann necklace I = (I1, . . . , In) one can associate a decorated permu-
tation πI as follows:
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• if Ii+1 = (Ii \ {i}) ∪ {j}, then πI(j) = i;

• if Ii+1 = Ii and i /∈ Ii, then πI(i) = i;

• if Ii+1 = Ii and i ∈ Ii, then πI(i) = i.

The assignment I 7→ πI defines a one-to-one correspondence between the set of Grass-
mann necklaces of type (d, n) and the set of decorated permutations of [n] having exactly
d weak excedances.

Proposition 2.11. [2, Proposition 4.6] The map I 7→ πI is a bijection between the set of
Grassmann necklaces of type (d, n) and the set of decorated permutations of [n] having exactly d
weak excedances.

Definition 2.12. If P is a positroid and I is the Grassmann necklace associated to P, then
we call πI the decorated permutation associated to P.

3 Canonical Labelings on Unit Interval Orders

In this section we introduce the concept of canonically labeled poset, and we use it to
exhibit an explicit bijection from the set Un of non-isomorphic unit interval orders of
cardinality n to the set Dn of n× n Dyck matrices.

Given a poset P and i ∈ P, we denote the order ideal and the dual order ideal of i by Λi
and Vi, respectively. The altitude of P is the map α : P → Z defined by i 7→ |Λi| − |Vi|.
An n-labeled poset P respects altitude if for all i, j ∈ P, the fact that α(i) < α(j) implies
i < j (as integers). Notice that every poset can be labeled by the set [n] such that, as an
n-labeled poset, it respects altitude.

Definition 3.1. An n-labeled poset is canonically labeled if it respects altitude.

Each canonically n-labeled poset is, in particular, naturally labeled. The next propo-
sition characterizes canonically n-labeled unit interval orders in terms of their antiadja-
cency matrices.

Proposition 3.2. [13, Proposition 5] An n-labeled unit interval order is canonically labeled if
and only if its antiadjacency matrix is a Dyck matrix.

The above proposition indicates that the antiadjacency matrices of canonically labeled
unit interval orders are quite special. In addition, canonically labeled unit interval orders
have very convenient interval representations.

Proposition 3.3. Let P be an n-labeled unit interval order. Then the labeling of P is canonical
if and only if there exists an interval representation {[qi, qi + 1] | 1 ≤ i ≤ n} of P such that
q1 < · · · < qn.
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If P is a canonically n-labeled unit interval order, and I = {[qi, qi + 1] | 1 ≤ i ≤ n} is
an interval representation of P satisfying q1 < · · · < qn, then we say that I is a canonical
interval representation of P.

Note that the image (as a multiset) of the altitude map does not depend on the labels
but only on the isomorphism class of a poset. On the other hand, the altitude map αP of
a canonically n-labeled unit interval order P satisfies αP(1) ≤ · · · ≤ αP(n). Thus, if Q is
a canonically n-labeled unit interval order isomorphic to P, then

(αP(1), . . . , αP(n)) = (αQ(1), . . . , αQ(n)), (3.1)

where αQ is the altitude map of Q. Let AP and AQ be the antiadjacency matrices of P
and Q, respectively. As αP(1) = αQ(1), the first rows of AP and AQ are equal. Since the
number of zeros in the i-th column (respectively, i-th row) of AP is precisely |Vi(P)− 1|
(respectively, |Λi(P)| − 1), and similar statement holds for Q, the next lemma follows
immediately by using (3.1) and induction on the row index of AP and AQ.

Lemma 3.4. If two canonically labeled unit interval orders are isomorphic, then they have the
same antiadjacency matrix.

Now we can define a map ϕ : Un → Dn, by assigning to each unit interval order its
antiadjacency matrix with respect to any of its canonical labelings. By Lemma 3.4, this
map is well defined.

Theorem 3.5. For each natural n, the map ϕ : Un → Dn is a bijection.

4 Description of Unit Interval Positroids

Now we proceed to describe the decorated permutation associated to a unit interval
positroid. Throughout this section A is an n× n Dyck matrix and B = (bi,j) = φ(A) is
as in Lemma 2.4. We will consider the indices of the columns of B module 2n. Further-
more, let P be the unit interval positroid represented by B, and let IP and π−1 be the
Grassmann necklace and the decorated permutation associated to P.

The set of principal indices of B is the subset of {n + 1, . . . , 2n} defined by

J = {j ∈ {n + 1, . . . , 2n} | Bj 6= Bj−1}.

We associate to B the weight map ω : [2n] → [n] defined by ω(j) = max{i | bi,j 6= 0};
more explicitly, we obtain that

ω(j) =
{

j if j ∈ {1, . . . , n}
|b1,j|+ · · ·+ |bn,j| if j ∈ {n + 1, . . . , 2n}.
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Since the last row of the antiadjacency matrix A has all its entries equal to 1, the map ω

is well defined. If j ∈ {n + 1, . . . , 2n}, then ω(j) is the number of nonzero entries in the
column Bj. Now we find an explicit expression for the function representing the inverse
of the decorated permutation associated to P.

Proposition 4.1. For i ∈ {1, . . . , 2n},

π(i) =


i + 1 if n < i < 2n and i + 1 /∈ J
ω(i) if n < i and either i = 2n or i + 1 ∈ J
n + 1 if i = 1
i− 1 if 1 < i ≤ n and ω(j) 6= i− 1 for all j ∈ J
j if 1 < i ≤ n and {j} = J ∩ω−1(i− 1).

Now we are in a position to prove our main result, which describes the attractive
combinatorial structure of the decorated permutation π−1. The above proposition plays
an important role in the (omitted) proof.

Theorem 4.2. π−1 is a 2n-cycles (1 j1 . . . j2n−1) satisfying the next two conditions:

1. in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear in increasing order while the
elements n + 1, . . . , 2n appear in decreasing order;

2. for every 1 ≤ k ≤ 2n− 1, the set {1, j1, . . . , jk} contains at least as many elements of the
set {1, . . . , n} as elements of the set {n + 1, . . . , 2n}.

5 A Direct Way to Read The Unit Interval Positroid

Throughout this section, let P be a canonically n-labeled unit interval order with an-
tiadjacency matrix A. Also, let I = {[qi, qi + 1] | 1 ≤ i ≤ n} be a canonical interval
representation of P (i.e., q1 < · · · < qn); Proposition 3.3 ensures the existence of such
an interval representation. In this section we describe a way to obtain the decorated
permutation associated to the unit interval positroid induced by P directly from either
A or I . Such a description will reveal that the function ρ ◦ φ ◦ ϕ : Un → Pn introduced
in Section 2 is a bijection (Theorem 5.4).

The north and east borders of the Young diagram formed by the nonzero entries of A
give a path of length 2n we call the semiorder path of A. Let B = (In|A′) = φ(A), where φ

is the map introduced in Lemma 2.4. Let us call inverted path of A the path consisting of
the south and east borders of the Young diagram formed by the nonzero entries of A′.
Example 5.2 sheds light upon the statement of the next theorem, which describes a way
to find the decorated permutation associated to the unit interval positroid induced by P
directly from A.
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Theorem 5.1. If we number the n vertical steps of the semiorder path of A from bottom to top in
increasing order with {1, . . . , n} and the n horizontal steps from left to right in increasing order
with {n + 1, . . . , 2n}, then we obtain the decorated permutation associated to the unit interval
positroid induced by P by reading the semiorder path in northwest direction.

Example 5.2. The figure below displays the antiadjacency matrix A of the canonically
5-labeled unit interval order P introduced in Example 1.2 and the matrix φ(A) both
showing their respective semiorder and inverted path encoding the decorated permuta-
tion π = (1 2 10 3 9 4 8 7 5 6) associated to the positroid induced by P.

Figure 4: Dyck matrix A and its image φ(A) exhibiting the decorated permutation π

along their semiorder path and inverted path, respectively.

The next remark follows immediately.

Remark 5.3. The set of 2n-cycles (1 j1 . . . j2n−1) satisfying conditions (1) and (2) of Theorem 4.2
is in bijection with the set of Dyck paths of length 2n.

It is not hard to argue, as a consequence of Theorem 5.1 and Remark 5.3, that the
map ρ ◦ φ ◦ ϕ : Un → Pn, where ρ, φ, and ϕ are as defined in Section 2 and Section 3, is
indeed a bijection.

Theorem 5.4. The map ρ ◦ φ ◦ ϕ : Un → Pn is a bijection.

Corollary 5.5. The number of unit interval positroids on the ground set [2n] equals the n-th
Catalan number.

We conclude this section describing how to decode the decorated permutation as-
sociated to the unit interval positroid induced by P directly from its canonical interval
representation I . Labeling the left and right endpoints of the intervals [qi, qi + 1] ∈ I by
− and +, respectively, we obtain a 2n-tuple consisting of pluses and minuses by reading
from the real line the labels of the endpoints of all such intervals. On the other hand, we
can have another plus-minus 2n-tuple if we replace the horizontal and vertical steps of
the semiorder path of A by − and +, respectively, and then read it in southeast direction
as indicated in the following example.
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Example 5.6. Figure 5 shows the antiadjacency matrix of the canonically 5-labeled unit
interval order P showed in Example 1.2 and a canonical interval representation of P,
both encoding the plus-minus 10-tuple (−,+,−,−,+,−,+,−,+,+), as described in the
previous paragraph.

Figure 5: Dyck matrix and canonical interval representation of P encoding the 10-tuple
(−,+,−,−,+,−,+,−,+,+).

Lemma 5.7. Let an = (a1, . . . , a2n) and bn = (b1, . . . , b2n) be the 2n-tuples with entries in
{+,−} obtained by labeling the steps of the semiorder path of A and the endpoints of all intervals
in I , respectively, in the way described above. Then an = bn.

Lemma 5.7 immediately implies our final result.

Theorem 5.8. Labeling the left and right endpoints of the intervals [qi, qi + 1] by n + i and
n + 1− i, respectively, we obtain the decorated permutation associated to the positroid induced
by P by reading the label set {1, . . . , 2n} from the real line from right to left.

The diagram below illustrates how to label the endpoints of a canonical interval
representation of the 6-labeled unit interval order P shown in Figure 1 to obtain the
decorated permutation π = (1 12 2 3 11 10 4 5 9 6 8 7) of the positroid induced by P.

Acknowledgements

While working on this paper, the first author was partially supported by the NSF-AGEP,
while the second author was partially supported by the UC Berkeley Department of



12 Anastasia Chavez and Felix Gotti

Mathematics. Both authors are grateful to Lauren Williams for her guidance, Federico
Ardila for many helpful suggestions, and Alejandro Morales for the initial question that
motivated this project.

References

[1] M. Aissen, I. J. Schoenberg, and A. Whitney. “On generating functions of totally positive
sequences I”. J. Anal. Math. 2 (1952), pp. 93–103. DOI.

[2] F. Ardila, R. Rincón, and L. K. Williams. “Positroids and non-crossing partitions”. Trans.
Amer. Math. Soc. 368 (2016), pp. 337–363.

[3] R. A. Dean and G. Keller. “Natural partial orders”. Canad. J. Math. 20 (1968), pp. 535–554.
DOI.

[4] P. C. Fishburn. “Interval representations for interval orders and semiorders”. J. Math. Psych.
10 (1973), pp. 91–105. DOI.

[5] P. C. Fishburn. Interval Orders and Interval Graphs. J. Wiley, 1985.

[6] J. E. Freund and R. L. Wine. “On the enumeration of decision patterns involving n means”.
Ann. Math. Statist. 28 (1957), pp. 256–259. DOI.

[7] Y. Kodama and L. K. Williams. “KP solitons and total positivity for the Grassmannian”.
Invent. Math. 198 (2014), pp. 637–699.

[8] R. D. Luce. “Semiorders and a theory of utility discrimination”. Econometrica 24 (1956),
pp. 178–191. DOI.

[9] S. Oh. “Positroids and Schubert matroids”. J. Combin. Theory Ser. A 118 (2011), pp. 2426–
2435. DOI.

[10] A. Postnikov. “Total positivity, Grassmannians, and networks”. 2006. arXiv:math/0609764.

[11] D. Scott. “Measurement structures and linear inequalities”. J. Math. Psych. 1 (1964), pp. 233–
247. DOI.

[12] J. S. Scott. “Grassmannians and cluster algebras”. Proc. London Math. Soc 92 (2006), pp. 345–
380. DOI.

[13] M. Skandera and B. Reed. “Total nonnegativity and (3+1)-free posets”. J. Combin. Theory
Ser. A 103 (2003), pp. 237–256. DOI.

[14] R. P. Stanley. Catalan Numbers. Cambridge University Press, 2015.

https://doi.org/10.1007/BF02786970
https://doi.org/10.4153/cjm-1968-055-7
https://doi.org/10.1016/0022-2496(73)90007-2
https://doi.org/10.1214/aoms/1177707051
https://doi.org/10.2307/1905751
https://doi.org/10.1016/j.jcta.2011.06.006
https://arxiv.org/abs/math/0609764
https://doi.org/10.1016/0022-2496(64)90002-1
https://doi.org/10.1112/s0024611505015571
https://doi.org/10.1016/s0097-3165(03)00072-4

	Introduction
	Background and Notation
	Canonical Labelings on Unit Interval Orders
	Description of Unit Interval Positroids
	A Direct Way to Read The Unit Interval Positroid

